Introduction to Mössbauer spectroscopy and some selected applications of the method for catalysts' studies

(proposed preliminary program for a condensed course to be held at Dalian Institute of Chemical Physics by prof. Károly Lázár – Centre for Energy Research, Budapest, Hungary)

	9:00 - 11:00	14:00 - 16:00	18:00 - 20:00
05/11/2019	1.1 - 1.2	1.3 - 1.4	
06/11/2019	1.5 -1.6	2.1 - 2.3.1	
07/11/2019		2.3.2 - 2.3.4	3.1 - 3.3

Tentative schedule

Part 1 -Introduction

1.1. Basics of Mössbauer effect

- 1.1.1. The discovery of the Mössbauer Effect (ME)
- 1.1.2. Principles of the nuclear gamma resonance absorption
- 1.1.3. Further nuclear data for $\,^{57}\text{Fe}$
- 1.1.4. Mössbauer active nuclei

1.2. Basics of Mössbauer spectroscopy (MS)

- 1.2.1. Spectroscopy
- 1.2.2. Basic parameters (Isomer shift, quadrupole splitting. MHF)
- 1.2.3. Intensity Debye-Waller factor temperature dependence of the effect

1.3. Experimental techniques

- 1.3.1. Basic units of the electronics general scheme of a spectrometer
- 1.3.2.Transmission-, back scattering-, emission-, conversion electron techniques, in-beam excitation of sources. Synchrotron-based nuclear forward scattering. Studies in frozen solutions.

1.4. Evaluation of spectra (description with Lorentz lines – distribution of parameters - other codes)

1.5. Implementation of various techniques, performance of experiments

- 1.5.1. Limits of accuracy evaluation of spectra with considering the technical constraints.
- 1.5.2. Practical illustration: an intercomparison

1.6. History – short retrospection – MEDC

Part 2. - Mössbauer spectroscopy of catalysts

2.1. Assessment of MS from the aspect of catalysts' studies (with respect to catalytic processes)

2.2. Practical accomplishment - in situ cells

2.3. Selected examples for catalysts studies.

- 2.3.1. <u>Metals and alloys</u> (Fisher-Tropsch, ⁵⁷Co emission HDS, several Pt-Sn, Au-Sn, Rh-Sn) ¹⁹⁷Au Mössbauer spectroscopy
- 2.3.2. <u>Oxides</u> (spinels, zeolites, mesoporous catalysts, MOF-s)
- 2.3.3. <u>Fe-C-N</u> (Prussian blue, single atom catalysts)
- 2.3.4. molecular catalyst complexes, transient states,

3. Summary

- 3.1. Closing advices for practisizing experiments,
- 3.2. Overall conclusions
- 3.3. Closing remarks

(discussion of any further optional issues)

(Károly Lázár)

22-10-2019.